BMW Shows Off Its Battery And Electric Motor Production Facility

AUG 26 2016 BY MARK KANE 23

Production of electric components in BMW's Dingolfing facility for plug-in vehicles

Production of electric components in BMW’s Dingolfing facility for plug-in vehicles

Production of electric components in BMW's Dingolfing facility for plug-in vehicles

Production of electric components in BMW’s Dingolfing facility for plug-in vehicles

The BMW Group revealed some of its production process from its Dingolfing plant, which is responsible for all high-voltage batteries (modules and packs) for BMW, as well as electric motors.

Those two key components are all produced in-house.

A few years back, the Dingolfing facility began supplying batteries to the Active E prototypes and conventional hybrids; the BMW 3 Series ActiveHybrid, BMW 5 Series ActiveHybrid and BMW 7 Series ActiveHybrid.

Then later production was expanded to allow for the BMW i brand (i3 and i8), and then again this past year to plug-in hybrids versions of core models (now under the iPerformance brand), the 225xe, 330e and most recently the 740e.

A lot has been going on in Dingolfing, as BMW has already invested more than €100 million in the facility to handle electrification needs.  While the number of employees is scheduled to grow from about 100 today to more than 200 in a few years – which clearly indicates that plug-in sales are expected to grow quite quickly.

Here is extensive description about Dingolfing battery/motor production:

3. Battery technology – a core capability of the BMW Group.

The future appeal and market popularity of electric vehicles will to a large extent hinge on advances in battery technology. The performance of the high-voltage battery is key to meeting customer criteria such as:
• electric range
• charging time
• power output
• reliability/durability
• safety
• costs.

Production of electric components in BMW's Dingolfing facility for plug-in vehicles

Production of electric components in BMW’s Dingolfing facility for plug-in vehicles

High-voltage batteries, along with electric motors and intelligent energy management systems, are cornerstones of the BMW eDrive technology for BMW i and BMW iPerformance models. The BMW Group decided at an early stage to take the same approach for its eDrive components as for its internal combustion engines, namely to develop them in-house, in each case tailoring them to the requirements of the specific model. This is the only way to fully exploit the potential of powertrain electrification for across-the-board reductions in fuel consumption and emissions, while at the same time delivering the hallmark BMW driving experience based on sporty and refined performance characteristics.

The high-voltage battery packs built by the BMW Group meet the high standards that a premium-quality vehicle must always conform to. For example their performance remains exceptionally stable on short or longer trips. Even when the remaining range is getting low, driving enjoyment is not affected. Therein lies a key difference between BMW Group batteries and those used in vehicles from other manufacturers. At the same time, these batteries are also much less temperaturesensitive than those of competitor models. Only extremely low outside temperatures are capable of reducing their performance. And even under these circumstances, usable battery power still remains constant over a wide state-ofcharge window. The high-voltage batteries used by the BMW Group are also designed for a very long service life. That’s why the warranty on BMW electric vehicle batteries is eight years.

Production of electric components in BMW's Dingolfing facility for plug-in vehicles

Production of electric components in BMW’s Dingolfing facility for plug-in vehicles

To achieve an optimal combination of crash safety, durability (reliability) and performance, a high-quality, robust production process is essential. The Dingolfing plant is the BMW Group’s centre of competence for the manufacture of electric drive systems, supplying high-voltage batteries and other chassis and powertrain components for BMW i models and the BMW Group’s future plug-in hybrid models.Battery cells used in BMW i cars and the plug-in hybrid versions of core-brand models are always sourced from the leading manufacturer of lithium-ion battery cells. Whenever a new generation of cells comes onto the market, a new procurement round is launched. This ensures that BMW is always able to use the best possible cell technology, on commercially reasonable terms. BMW believes it can only be successful if it has an in-depth understanding of cell chemistry and cell manufacturing, that is to say if its competency standards here are similar to those in the field of internal combustion engines. With its internal battery cell research activities, the BMW Group makes sure that it maintains the necessary in-house evaluation and appraisal capacity at all times.

Production of electric components in BMW's Dingolfing facility for plug-in vehicles

Production of electric components in BMW’s Dingolfing facility for plug-in vehicles

The BMW Group’s international research network conducts extensive studies in all areas of battery technology across the entire value chain, including materials development. Making advances in battery cell materials is the most effective lever for progress in key customer criteria such as energy density, charge capability, power and costs, while enabling the same high standards of reliability, long service life and safety to be maintained.

This form of research and development cooperation between the BMW Group, materials manufacturers and cell manufacturers allows BMW to adopt a very focused approach to innovation, ensuring that now and in the future, BMW i and BMW i Performance vehicles are always equipped with the best possible battery technology, in line with the premium quality ethos of the BMW Group.

Production of electric components in BMW's Dingolfing facility for plug-in vehicles

Production of electric components in BMW’s Dingolfing facility for plug-in vehicles

Production of electric components in BMW's Dingolfing facility for plug-in vehicles

Production of electric components in BMW’s Dingolfing facility for plug-in vehicles

Production of electric components in BMW's Dingolfing facility for plug-in vehicles

Production of electric components in BMW’s Dingolfing facility for plug-in vehicles

Production of electric components in BMW's Dingolfing facility for plug-in vehicles

Production of electric components in BMW’s Dingolfing facility for plug-in vehicles

Production of electric components in BMW's Dingolfing facility for plug-in vehicles

Production of electric components in BMW’s Dingolfing facility for plug-in vehicles

Production of electric components in BMW's Dingolfing facility for plug-in vehicles

Production of electric components in BMW’s Dingolfing facility for plug-in vehicles

Production of electric components in BMW's Dingolfing facility for plug-in vehicles

Production of electric components in BMW’s Dingolfing facility for plug-in vehicles

Production of electric components in BMW's Dingolfing facility for plug-in vehicles

Production of electric components in BMW’s Dingolfing facility for plug-in vehicles

Production of electric components in BMW's Dingolfing facility for plug-in vehicles

Production of electric components in BMW’s Dingolfing facility for plug-in vehicles

4. Competence centre for eDrive technology: The BMW Group’s Dingolfing plant is the main production centre for electric motors and high-voltage batteries.

Production of electric components in BMW's Dingolfing facility for plug-in vehicles

Production of electric components in BMW’s Dingolfing facility for plug-in vehicles

With its long experience in the field of electric mobility, its ultra-modern production facilities and its specially trained employees, the Dingolfing plant has established itself as the main competence centre for eDrive technology within the global production network of the BMW Group. Ever since the launch of the first BMW i production models, the Dingolfing plant has produced high-voltage batteries and other powertrain and chassis components for these vehicles. Prior to that, the plant already supplied high-voltage batteries for the BMW Active E, BMW 3 Series ActiveHybrid, BMW 5 Series ActiveHybrid and BMW 7 Series ActiveHybrid.

Now, with the market launch of the first plug-in hybrid versions of the BMW corebrand models – for which the plant supplies the rear-mounted electric motors and all high-voltage battery packs – production of BMW eDrive components in Dingolfing is scaling up once again. Over the past years, the BMW Group has invested more than €100 million in electric drive technology in Dingolfing, strengthening the plant’s competitiveness and securing jobs. Although the production processes for electric motors and high-voltage batteries are highly automated, the plant is taking on increasing numbers of highly qualified employees. The number of people employed in production of components for plug-in hybrid vehicles will increase from around 100 at the present time to more than 200 in the medium term.

Production of electric components in BMW's Dingolfing facility for plug-in vehicles

Production of electric components in BMW’s Dingolfing facility for plug-in vehicles

Technology transfer from BMW i also generates innovations in production and equips it for the future.
The transfer of technology and know-how from the development of BMW i models also extends to the production side, as is clear from a glance at the manufacturing capacities for electric drive technology. The experience acquired by BMW i not only flows into improving key features of the BMW eDrive components themselves, it also makes for more flexible and quality-oriented production processes at the Dingolfing plant.

This internal cross-brand knowledge transfer mirrors the BMW Group’s allencompassing approach to electric mobility in general. Electric drive components that play a key role in the driving experience are developed in-house. In addition to electric motors and the high-voltage batteries, this also includes the power electronics and the vehicle electrical system – which provide the basis for intelligent energy management. The decision to develop and produce eDrive technology within the company means the BMW Group has acquired a level of systems expertise that is unique among its competitors. Extensive know-how about all the individual system components is paired with an in-depth understanding of electric drive technology as an overall system. Innovations and improvements can be quickly and directly incorporated as exclusive USPs into the product substance of eDrive components. All this helps to strengthen the BMW Group in its quest to be the industry leader in the EV segment.

Production of electric components in BMW's Dingolfing facility for plug-in vehicles

Production of electric components in BMW’s Dingolfing facility for plug-in vehicles

The BMW Group’s decision to develop and produce eDrive technology in-house means that the entire portfolio of drive technology for all electric and plug-in hybrid vehicles always conforms to the high standards of the BMW Group on quality, reliability and safety. At the same time, the performance characteristics of this drive technology can be counted on to provide all the models in which these components are fitted with their signature brand attributes. The in-house principle also makes it possible to develop and improve the products and the production processes in parallel.

Modular design system offers the twin advantages of standardisation and flexibility.

The parallel relationship between the product portfolio and the production process can already be seen in the configuration of the new manufacturing facilities at the BMW Group’s plant in Dingolfing. A total area of approximately 6,000 square metres in the new production hall acts as the global production network’s main manufacturing site for eDrive components. Approximately 1,500 square metres of space is devoted to the production of electric motors and battery modules, while a 1,000-square-metre area is used for the assembly of the high-voltage batteries. In all these areas, the manufacturing facilities are configured to allow rapid expansion of production capacities, which can even be doubled in size with no negative impact on the efficiency of the production process. Also, a number of existing vacant spaces on the site could potentially be used to extend the overall production capacity for electric drive systems even further.

Production of electric components in BMW's Dingolfing facility for plug-in vehicles

Production of electric components in BMW’s Dingolfing facility for plug-in vehicles

Similar flexibility can be seen in the eDrive product portfolio itself. The BMW Group has developed a modular design system whereby electric motors and high-voltage batteries of varying size, performance and type can be developed on the basis of shared, standardised design principles and common basic characteristics. With this combination of standardisation and flexibility, the Group is equipped to cover the requirements of all of its current and future all-electric and plug-in hybrid models. What’s more, the scalable architecture is also the key to offering these models at attractive prices, comparable with those of conventionally powered vehicles of similar power and performance. The modular strategy also allows eDrive components for a wide range of BMW i and BMW iPerformance models to be produced simultaneously on a standardised production line. In this way the BMW Group is able to respond flexibly to changes in market demands, and is able to smoothly integrate the production of new model versions into the existing production process.

Electric motors from Dingolfing: bespoke technology and innovative manufacturing deliver the expected driving experience in electric models as well.

Production of electric components in BMW's Dingolfing facility for plug-in vehicles

Production of electric components in BMW’s Dingolfing facility for plug-in vehicles

With its strategy of in-house development and production of eDrive technology, the BMW Group aims to ensure that its customers are also offered the driving experience expected of the BMW Group brand in question when driving an electric model. As a result, the Group is able to differentiate itself clearly from competitor brands in the electric market too, through such characteristics as dynamic performance, efficiency and comfort. The electric motors play a key part in this. The motors used in the BMW i and BMW iPerformance models feature a high power-tosize and power-to-weight ratio and offer linear power delivery extending right up into the high rpm range, along with exceptional efficiency. These characteristics are the product of a special design principle, the incorporation of BMW i know-how into a wide range of detailed features, and innovative production processes.

The stator and rotor, both produced at the BMW Group’s Dingolfing plant, are then attached to the casing of the motor. The assembly line is highly flexible, and individual employees are trained to be able to perform a range of different operations. The U-shaped arrangement of the workstations ensures that this flexibility is combined with high efficiency. At all stations the components are delivered to the operator in an ergonomic manner. At the same time the work stations are adjustable for height and tilt to suit individual ergonomic needs. Most operations can be performed either from a sitting or a standing position. This special way of working contributes to the high production quality of the eDrive components that leave the Dingolfing plant.

Production of electric components in BMW's Dingolfing facility for plug-in vehicles

Production of electric components in BMW’s Dingolfing facility for plug-in vehicles

The high specific output and sporty characteristics of eDrive motors are a result of the extensive optimisation of the permanently excited synchronous electric motor technology on which these motors are based. For example the stator consists of up to two kilometres (1 ¼ miles) of copper wiring, which is specially wound for extracompact dimensions. The stator production process comprises the packaging and insulating of the individual sheet metal sections, and drawing in and forming the coils. The sheet metal sections are joined by laser welding. Rotor assembly also follows a special process. After the magnets have been inserted and caulked in the rotor structure, which is made up of numerous sheet metal sections, the cooled rotor shaft is shrink-fitted into the heated component. Only then is the rotor magnetised, which considerably simplifies the overall assembly process. During final assembly of the motor, the stator is first of all shrink-fitted into the motor casing, which has previously been induction-heated to a temperature of around 150 degrees Celsius. Then the rotor is inserted. After all other parts have been fitted, and a function test has been carried out, the fully assembled electric motor can be flange-mounted to the transmission.

Production of electric components in BMW's Dingolfing facility for plug-in vehicles

Production of electric components in BMW’s Dingolfing facility for plug-in vehicles

Customized battery packs: standardised design, individual configuration, maximum efficiency.

Production of the high-voltage battery packs for BMW i and BMW iPerformance models at the Dingolfing plant happens in two stages. The first, highly automated stage involves packaging the externally supplied lithium-ion cells into modules. These modules, each comprising 16 cells, are then mounted, together with the connectors, controllers and cooling systems, in an aluminium housing. The battery packs are in each case configured to meet the requirements of the model in which they are installed, and may comprise either five or six modules. The modular design principle allows high-voltage battery packs with common basic characteristics and quality standards to be custom-configured to the size and geometric requirements of the specific model. Every model can therefore be fitted with a battery that is optimally adapted to the available installation space and the intended positioning of the battery in the vehicle.

Production of electric components in BMW's Dingolfing facility for plug-in vehicles

Production of electric components in BMW’s Dingolfing facility for plug-in vehicles

The design and manufacture of the high-voltage battery packs provide further examples of knowledge transfer from BMW i. Numerous production techniques that contribute to their high quality and reliability were first used in the production of battery packs for the BMW i3 and BMW i8, since which time they have been continuously refined and improved. Following an initial inspection on arrival at the Dingolfing plant, the externally supplied battery cells, which are built to the BMW Group’s precise specifications, are readied for the largely automated module assembly process. Robots then apply a layer of bonding agent, package the cells into groups, pressure-weld the module frame to the grouped cells, fit the thermal interfaces and laser-weld the cell contacts.

The finished modules can then be assembled into a complete battery pack tailored to the requirements of the specific model. The BMW Group’s Dingolfing plant currently produces three different types of high-voltage battery pack, using what is known as a cellular manufacturing process. Cellular manufacturing offers exceptionally high levels of flexibility, while also ensuring efficiency and quality. This means that for batteries too, manufacturing capacity can be adjusted at any time to meet changing requirements, while new versions can always be easily integrated into the production process.

Production of electric components in BMW's Dingolfing facility for plug-in vehicles

Production of electric components in BMW’s Dingolfing facility for plug-in vehicles

Depending on the version, the battery pack comprises five or six modules, which are installed in an aluminium casing equipped with pre-installed cooling systems and connectors. The modules are automatically bolted in place and linked up using electrical connectors. This installation technique means that in the event of a fault it is possible to simply swap individual modules rather than having to replace the entire battery. The servicing workload is further reduced by the internal layout of the battery, which allows the insulated modules to be taken out without risk after opening the casing. Last but not least, the swapping of battery modules only requires minimal dismantling of the cooling system.

The coolant circuit of the vehicle’s air conditioning system is also used to cool the battery. Its gaseous coolant provides direct cooling of the cells. This approach ensures highly efficient temperature control, since the heat transfer from the evaporation process is direct and therefore much more efficient than if an additional medium were used. This allows a particularly compact cooling system to be used. At the same time, there is no risk of liquid being released in the event of a collision.

Production of electric components in BMW's Dingolfing facility for plug-in vehicles

Production of electric components in BMW’s Dingolfing facility for plug-in vehicles

Production of electric components in BMW's Dingolfing facility for plug-in vehicles

Production of electric components in BMW’s Dingolfing facility for plug-in vehicles

Production of electric components in BMW's Dingolfing facility for plug-in vehicles

Production of electric components in BMW’s Dingolfing facility for plug-in vehicles

Production of electric components in BMW's Dingolfing facility for plug-in vehicles

Production of electric components in BMW’s Dingolfing facility for plug-in vehicles

Categories: BMW

Tags: , ,

Leave a Reply

23 Comments on "BMW Shows Off Its Battery And Electric Motor Production Facility"

newest oldest most voted

Nice !

100% Engineering porn

Dinggolfing to be a sport in 2020 summer olympics

One of the main differences is that you yell “Too” rather than “Fore”.

NICE!

Interesting pictures! I would love to see some videos to electric motors. In Renault video I heard it took more time to produce a EV motor than a gasoline engine.

Agreed. The photo captions however, could hardly have been less interesting or informative. Might as well have said “something” 100 times over.

If you liked those pictures then you’ll enjoy this video from that other company that makes its own electric motors 🙂

High Efficiency Electric Drive Unit from Tesla Motors on Vimeo.

Excellent article. Thanks!!

Oh BTW, the title should have “shows off” and not “shows of”.

Whoops, nice catch Jesse! /fixed, thanks!

I guess the images sum up the current state of battery packs and motors: hand (human) made.

So few are made that it is not worth the effort and expense to design and build a robot assembly line.

> The assembly line is highly flexible, and
> individual employees are trained to be
> able to perform a range of different operations.

Tesla also uses hand-assembly of its electric motor windings. Apparently robots aren’t reliable enough to wind the wiring without making mistakes.

Not that you’ll find me complaining about that! More well-paying jobs for people, not robots, is what our country needs.

Heisenberghtbacktotherootsandnuts

Hi pushmi,

Why do you think that more jobs are better than more robots?

In that point I cannot follow your logic.

More robots produce more and thereby make things cheaper (slightly simplified).

More robots lead to more “free time” for us human beings.

More jobs reduce free time for human beings and therefore reduce the time we can spend on thinking, creating, living etc

More jobs also mean more accidents at work, more traffic jams, more pollution etc.

What exactly is the benefit of “more jobs” ?

Imo more jobs equal less freedom.

Go robots!

Heisenberghtbackto… said:

“More robots lead to more ‘free time’ for us human beings.”

What you’re calling “free time” is what most people call “not having a job”.

Perhaps automation displacing good blue-collar jobs isn’t a problem in your country. Perhaps people losing good, middle class manufacturing jobs and having to take poorly paying service jobs isn’t a problem in your country. It certainly is a problem in the USA. Now, that’s not to say that automation is the only factor causing a loss of good manufacturing jobs in the USA. Exporting jobs overseas is a big factor in that, too. But automation is certainly part of it.

In earlier decades, the conventional wisdom was that workers displaced by automation would find better paying jobs after retraining. In practice, that ideal hasn’t worked out in most cases. And that is one reason why the middle class is shrinking, while the numbers of working poor are increasing in the USA.

“We should do away with the absolutely specious notion that everybody has to earn a living. It is a fact today that one in ten thousand of us can make a technological breakthrough capable of supporting all the rest. The youth of today are absolutely right in recognizing this nonsense of earning a living. We keep inventing jobs because of this false idea that everybody has to be employed at some kind of drudgery because, according to Malthusian Darwinian theory he must justify his right to exist. So we have inspectors of inspectors and people making instruments for inspectors to inspect inspectors. The true business of people should be to go back to school and think about whatever it was they were thinking about before somebody came along and told them they had to earn a living.”

— Buckminster Fuller

Looks like BMW may be one of the serious Gassers to embrace this technology — unlike most of the majors out there. WHERE IS YOUR EV TOYOTA????

Heisenberghtbacktotherootsandnuts

Family Quandt has their hands on bmw, solarwatt and varta.

In some way they are more comparable to musks tesla-solarworld family business than eg vw

Heisenberghtbacktotherootsandnuts

And nordex…

It’s about time that some auto maker other than Tesla used pictures of its high-tech EV manufacturing process to advertise its EVs.

Go BMW!

Script reads like the Discovery Channel’s “How Its Made” show. Hey, maybe they should do this?

BMW is FINALLY learning to promote the EV revolution…at least in this small way.

IS THE BATTERY PACK IN THE PICTURE FOR BMW-3-series-ActiveHybrid ?

Actually that is for the MINI Countryman E…that of course doesn’t exist, and won’t be debuting on October 1st in Paris, and won’t be available in Q1 2017, (=

/going to be a great autoshow season for many reasons