US DoE Funds 6 Lithium-Ion Battery Research Project Targeted At 200 Wh/kg – Envia Reunites With General Motors

JUN 25 2014 BY MARK KANE 9

How Refreshing Is This?  Chevrolet Spark EV Arrives At Dealerships 3 Months Early

Chevrolet Spark EV with Envia battery pack… maybe some day?

Envia battery packs are currently used on GM manufactured electric and plug-in electric cars.

Envia battery cells

Six new applied battery research projects with objective to develop lithium-ion cells, which exceed energy density of 200 Wh/kg, were recently launched with support of $17.4 million from the US Department of Energy (DOE). Timeframe for the projects end in 2015.

Interesting is that we found Envia on the list, a company which had some adventures with General Motors. Moreover Envia got the most – $3.8 million for its project, in which besides Lawrence Berkeley and Oak Ridge National Laboratories, General Motors participates too. General Motors?  Really?

“Envia is leading a $3.8-million project that includes Lawrence Berkeley and Oak Ridge National Laboratories and General Motors. Envia has licensed Lithium-rich Layered-Layered Li2MnO3·LiMO2 composite patents from Argonne National Laboratory, and has developed HCMR (High Capacity Manganese Rich) cathodes based on these layered-layered composite structures.”

“Envia tailors HCMR based on the application (e.g., hybrid, pug-in hybrid or EV) using particle morphology, composition and nanocoatings. With one HCMR type in production (XP), Envia has two others in R&D (XE and XLE). In the ABR program, Envia is currently using an HCMR XLE cathode (240~280 mAh/g). While HCMR offers high capacity and safety and low cost, it can be challenged by high DC-Resistance, voltage fade upon cycling and poor durability.”

“The team plans to integrate the HCMR cathode material with a Si-C anode. Envia’s anode material will be paired with LBNL’s conductive binder to enable the long cycle and calendar life meeting ABR PHEV goals.”

Five other projects also using promising, but problematic in the implementation, silicon anodes:

  • Argonne National Laboratory. A team led by Argonne National Laboratory and including Brookhaven and Lawrence Berkeley National Laboratories and the University of Utah, is developing a new high energy redox couple (250 Wh/kg) based on a high-capacity full gradient concentration cathode (FCG) (230 mAh/g) and a Si-Sn composite anode (900 mAh/g). Project funding is $2.5 million.
  • TIAX. TIAX is the sole organization in a $2.2-million project to combine TIAX’s proprietary CAM-7 cathode material with a blended Si/carbon anode to achieve >200 Wh/kg and >400 Wh/L energy and >800 W/kg and >1600 W/L 10s pulse power targets under USABC PHEV battery testing procedures.
  • 3M. The 3M-led project, which includes Umicore, Army Research Laboratory, Berkeley Lab, Leyden Energy and GM Research and Development, is receiving $3 million in DOE funding. The basic approach is to combined a high-capacity Silicon alloy anode with a high energy NMC cathode and advanced electrolyte.
  • Penn State/University of Texas at Austin. The Penn State/U Texas project is a $2.4-million effort that includes EC Power, and Argonne and Lawrence Berkeley National Laboratories and that targets a high-energy, high-power cell for EV applications.
  • Farasis Energy. Farasis is leading a $3.5-million project that includes Argonne and Lawrence Berkeley National Laboratories, Dupont and Nanosys/OneD Material to demonstrate a PHEV40 cell with an energy density of 250 Wh/kg and an EV light duty cell with an energy density 350 Wh/kg that can meet the cycle life goals for those applications.

Source: Green Car Congress

Categories: Battery Tech

Tags: ,

Leave a Reply

9 Comments on "US DoE Funds 6 Lithium-Ion Battery Research Project Targeted At 200 Wh/kg – Envia Reunites With General Motors"

newest oldest most voted

Very interesting. An interesting web that they weave.

All your battery advancements are belong to everyone?

One Very Big – +1

Thomas J.Thias

It’s 2012 all over again! Yay!

Indeed, it seems that DOE still lives in the world before Tesla.

200 Wh/kg . . . Tesla has energy density about 270 Wh / kg! And even pack level energy density is above 150 Wh / kg.

Yeah, I was surprised to see Envia on the list of companies receiving grants. I would have assumed they’d at least have the dignity to change their corporate name after they were exposed as frauds.

I wonder if those folks at GM have short memory.

Hi there,

Li-Po versus Li-ion.
Solar airplane “impulse 2”, use the Li-Po batteries. 260 Wh/Kg.
BTW the Kia soul EV use Li-Po too.

Li-ion already old fashion?

Good road with EV.

Hoping the Dept. of Energy grants have a $/Wh goal in addition to the Wh/kg goal. Currently there are comercial battery technologies that exceed 200 Wh/kg … but if the research leads to a method of producing at 50-70% of current cost it could be significant.

Note: Tesla is targeting a 30% reduction in battery price by designing and building a gigafactory. The cost reductions will come from improving supply logistics and processing methods. ie: focussing on technology and research outside of the lab … in the field to scaling factory production.